voidquick_sort(int q[], int l, int r) { if (l >= r) return;
int i = l - 1, j = r + 1, x = q[l + r >> 1]; while (i < j) { do i ++ ; while (q[i] < x); do j -- ; while (q[j] > x); if (i < j) swap(q[i], q[j]); } quick_sort(q, l, j), quick_sort(q, j + 1, r); }
归并排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
voidmerge_sort(int q[], int l, int r) { if (l >= r) return;
int mid = l + r >> 1; merge_sort(q, l, mid); merge_sort(q, mid + 1, r);
int k = 0, i = l, j = mid + 1; while (i <= mid && j <= r) if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ]; else tmp[k ++ ] = q[j ++ ];
while (i <= mid) tmp[k ++ ] = q[i ++ ]; while (j <= r) tmp[k ++ ] = q[j ++ ];
for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j]; }
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用: intbsearch_1(int l, int r) { while (l < r) { int mid = l + r >> 1; if (check(mid)) r = mid; // check()判断mid是否满足性质 else l = mid + 1; } return l ; } // 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用: intbsearch_2(int l, int r) { while (l < r) { int mid = l + r + 1 >> 1; if (check(mid)) l = mid; else r = mid - 1; } return l; }
LeetCode.35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
classSolution { publicintsearchInsert(int[] nums, int target) { intl=0; intr= nums.length - 1; while (l <= r) { intmid= l + r >> 1; if (nums[mid] == target) return mid; if (nums[mid] >= target) r = mid - 1; else l = mid + 1; } return l; } }
int L=-1,R=n; while(L+1!=R) { int mid=L+R>>1; if(check()) L=mid; else R=mid; //最后根据你所分左右两边区间的结果 //选取L或者R作为结果 }
高精度
高精度加法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// C = A + B, A >= 0, B >= 0 vector<int> add(vector<int> &A, vector<int> &B) { if (A.size() < B.size()) returnadd(B, A);
vector<int> C; int t = 0; for (int i = 0; i < A.size(); i ++ ) { t += A[i]; if (i < B.size()) t += B[i]; C.push_back(t % 10); t /= 10; }
if (t) C.push_back(t); return C; }
高精度减法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// C = A - B, 满足A >= B, A >= 0, B >= 0 vector<int> sub(vector<int> &A, vector<int> &B) { vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; }
// C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> &A, int b) { vector<int> C;
int t = 0; for (int i = 0; i < A.size() || t; i ++ ) { if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; }
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C; }
高精度除低精度
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// A / b = C ... r, A >= 0, b > 0 vector<int> div(vector<int> &A, int b, int &r) { vector<int> C; r = 0; for (int i = A.size() - 1; i >= 0; i -- ) { r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }